a2 United States Patent

US006202066B1

10) Patent No.: US 6,202,066 B1

Barkley et al. #s) Date of Patent: Mar. 13, 2001
(549) IMPLEMENTATION OF ROLE/GROUP 5,202,997 4/1993 ATt .cvererereerneeiecieiinennne 713/200
PERMISSION ASSOCIATION USING 5,263,157 * 11/1993 JaNiS c.eccvereeererenerrcceecerennaecsccene 707/9
OBJECT ACCESS TYPE 5,265,221 11/1993 Miller 711/163
5,276,901 * 1/1994 Howell et al. . .. 707/9
(75) Inventors: John Barkley, Darnestown, MD (US); 2’;%’322 %ﬁgg; gseilbes et al. 71;?27&9)
Anthony V. Cincotta, Falls Church, VA 5765153 6/1998 Benanter et al. - 707/9
(US) 5768504 6/1998 Kells et al. 7137201
. . . 5,787,427 7/1998 Benantar et al. ...c..ccoceveruenennee 707/9
(73) Assignee: The United States of America as 5802276 9/1998 Benantar et al. .. . 713/200
represented by the Secretary of 5,809,506 9/1998 Copeland 707/103
Commerce, Washington, DC (US) 5,903,720 * 5/1999 Stokes 713/200
5,911,143 * 6/1999 Deinhart et al. ... 707/103
(*) Notice: Subject to any disclaimer, the term of this 6,023,765 * 2/2000 Kuhn 713/200
patent is extended or adjusted under 35 6,044,466 * 3/2000 Anand et al. ... 713/200
U.S.C. 154(b) by 0 days. 6,088,679 * 7/2000 Barkleyccoviviiiiiinininns 705/8
* cited by examiner
(21) Appl. No.: 09/195,449
oo Primary Examiner—Paul V. Kulik
ttorney, Agent, or Firm—Michael De eli
(22) Filed: Nov. 18, 1998 74y A v, Ag Fi ichael De Angeli
Related U.S. Application Data (57) ABSTRACT
(60) Provisional application No. 60/066,149, filed on Nov. 19,
1997. Security administration in a computer system is simplified
7 by defining a new and independent entity called an Object
(51) Int. CL7 e GO6F 17/30 y g p A y jec
(52) US.Cl 707/9; 713/200 Access Type (OAT). OATs comprise access control speci-
S . fications associating roles with permissions, and associating
(58) Field of Search 770173//123)30’ 378007//295, the roles with a set of objects, such as resources or files.
’ Different roles may have differing permissions to objects
. associated with an OAT, and objects may be assigned to
(56) References Cited plural OATs. A mechanism is also presented whereby system
U.S. PATENT DOCUMENTS administrators are provided with the capability to display
462131 11/1986 Boeh | 2078 and manipulate access designations by operating only on the
4.701.840 10;1987 Bosbert of 8l o 313/2(40 independent OATS.
SA63147 1171992 OFA wooovoeroorsoeresersoereren 707/9
5,173,939 * 12/1992 Abadi et al. ...ccocovevvrvcerenernnnne. 707/9 10 Claims, 4 Drawing Sheets

< ObjectAccess: 1 's"'i"J"é“""E'&'i'tB“r"i

S_Obie.'ct}"AcéesS Iype Help

- RolelGroup

|accounts

/ Dlrectory Permlssmns

employee [X]

account Tep [WX
|branch_manager

‘{F?Qﬂai

financial_ advEsor RIIR]

DRDW-XDD
~OP: DO

F|Ie Pem‘nssmns

teler [X][RW]

U.S. Patent Mar. 13, 2001 Sheet 1 of 4 US 6,202,066 B1

financial_advisor

branch_manager

S OBject ACCess Type View: -
Elle Object Access _ype Vlew Help 2

_ Object Access Type T employee read

accounts :'-,.'.'.'- "

| :‘:,:_‘: cd to dir - RRRPEDEY employee [RWX][R]
employee rea.:._-;_-"-::.'-.- o

R D - [a\bank flesemplife
=0 an i [empl services.txt
: =1 bank_files B kbbsug
t |2 mb.sug)
"0 accounts oY |) retirement_info.txt
.10 te.sug

FIG.2

US 6,202,066 B1

Sheet 2 of 4

Mar. 13, 2001

U.S. Patent

¢ Old

......o.. . ..x.\,..>>.. _.m

. e -,

~

mﬁ

[ully]

Em:x_ .a__g S
JosiApe |eloueuij)./ .

=x_ aokojdwsal
5 euBwyouelq I\
X>>_ das™ E:ooom

mE:ooom T ...“ L

DY

| a_mI mem wmws< amao

m B_vw BAAL-58890V: BmEO =%

L, T

US 6,202,066 B1

Sheet 3 of 4

Mar. 13, 2001

U.S. Patent

¥ Old

ojui” |dwe J--
sjunoooe -4
; oyui jdwe .} soy ueq L= |-
syunoooe B ve =)
mm_ud_cg \e H_...... e

: ... O_H_ n_ D mnos_ >:9Em_: _U ﬁ n_cm_%m ﬁ.u:mé.

S mgoa:_o .
Cemh O mO: mu

7] Jobeuew ™ ,_ocs
%Ew\m_om

gm....a_m_._ >>m_> ma>H mmmoo< womEo m__.._
SMOEA UOISSIHHS - dNOIGRINY <

US 6,202,066 B1

Sheet 4 of 4

Mar. 13, 2001

U.S. Patent

e

CxO .>>. O _ .. w_.ﬂ.

muos_ >cohm;m_I .

ouos_ smn_ D

: ooe-ol &y ojui jdwe E--
” sjunoooe -1 ¥
; so|y yueq L= = I
. ve t=|!
mE:ooom/mmElv_cmn ve]: o ~— gofordus).
S R . -. : Qeuzzooom

ﬂ:mcc_

BT u_m_ucmc_w N
mm>o_qu
Jabeuew™ %:9

a:ohw\m_om

108

T .,..m_un ,E_.» ..&m $5850v 10900° mw__"_._”.
R, . O UOISSIUL]

m&d:&.w\m_om_ 5

LY FATN]

US 6,202,066 B1

1

IMPLEMENTATION OF ROLE/GROUP
PERMISSION ASSOCIATION USING
OBJECT ACCESS TYPE

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims priority from Provisional Patent
Application Ser. No. 60/066,149 filed Nov. 19, 1997.

FIELD OF THE INVENTION

This invention relates to improvements in control of
access to resources or objects within a computer system, that
is, by incorporation of novel object access type control
techniques.

BACKGROUND OF THE INVENTION

In many circumstances it is desired to restrict access to
various objects, such as files, within a computer system. In
the simplest example of access control, only certain persons
are permitted to read the contents of a sensitive file. In a
more general statement, “objects” may also include
resources, such as peripheral devices, external devices con-
trolled by the computer system (e.g., weapons, devices
controlling physical access to secured locations, and the
like), as well as files or groups of files, such as directories.
Further, there are varying levels of “access”; for example, in
many cases, it is desired that certain individuals may only
read a file, but may not alter or delete it, while others have
more general “permissions” with respect to that file.

The issue of access control to objects within a computer
system also arises in systems of significantly varying
configuration, and operated according to widely differing
mechanisms. For example, local area networks typically
comprise a number of individual processor devices, i.e.
personal computers or “PCs”, linked such that all share
certain resources, such as a file server. Such networks are
commonly operated under control of an “operating system”,
which may include the capability to provide varying indi-
viduals with varying “permissions” with respect to objects
stored on the file server. For example, Microsoft Corpora-
tion’s “Windows NT” operating system provides this
capability, by associating an “access control list” (“ACL”)
(this being an example of an “access control specification”,
as the latter term is used in the art) with each “object”, e.g.,
with each controlled file or group of files, i.e., with a
directory of controlled files. Windows NT allows various
permissions to be associated by the ACL with individuals or
groups of individuals, so that the access sought is permitted
only if the user’s identification matches the a user entry in
the ACL or the user is a member of a group entry in the ACL,
and the user or group entry is associated with permissions
for the access sought.

The issue of access control also arises in connection with
relational databases, which may be accessed from a variety
of processors not necessarily connected in a network oper-
ated by a single operating system per se; access control lists
are then typically associated with portions of the database
and operated similarly.

The question of access control also arises in connection
with objects stored such that they can be accessed over the
“Internet” or “Web”, i.e., such that they can be located by
universal resource locator (“URL”) inquiries; the “servers”
storing the resources sought may similarly store ACLs for
restricting access to various objects to individuals or groups
of individuals.

10

15

20

25

30

35

40

45

50

55

60

65

2

Stated more generally, therefore, access control
mechanisms, e.g., as effectively defined by an operating
system such as Windows NT, require that security attributes
be maintained concerning both users and objects. User
security attributes may consist of defined groups (“roles”) to
which the user belongs, wherein access to various objects is
permitted to all of the individuals identified as members of
the group; this technique, which simplifies the assignment of
permissions to users with respect to various objects by
assigning various individuals to groups according to their
status, is commonly referred to as “Role-Based Access
Control” (“RBAC”); see co-pending Ser. No. 08/980,908, of
one of the present inventors, incorporated herein by this
reference.

Object security attributes generally consist of the permis-
sions required to perform operations on the object. Access
control mechanisms provided by the computer system—
again, which terminology includes relational databases and
the Web as well as local area networks and the like—
compare user security attributes and object security
attributes in order to determine access.

In each of the typical types of computer systems discussed
above, object security attributes are usually kept with the
object (e.g., in the header of a file) and the object resides in
(or a resource is accessed through) a single server.
Consequently, when an object is accessed, its security
attributes can be conveniently evaluated once the object has
been located. Furthermore, changes in object security
attributes—e.g., to add or subtract an individual from those
having access of a specified type to a particular object—
need only be made at a single location.

Administering users’ access to resources is often accom-
plished by directly associating users with permissions, that
is, by providing an ACL with respect to each object or, at
best, groups of objects already organized in some known
way, i.e., as files within a directory. This approach can be
particularly difficult, error-prone, and costly to administer
when users enter and leave an organization and when users’
responsibilities change within an organization, because each
ACL must then be correctly altered. Comparable difficulties
arise in connection with changes involving the control of
access to a relational database, wherein the resources are
equivalent to tables, and the access control information
amounts to a list of operations that each individual (or role
member) may perform.

As noted above, user access control mechanisms have
been designed to address these problems and simplify the
process of effectuating changes in the status of individuals
and objects by the use of “roles”, whereby individuals may
be organized conveniently into groups, such that each mem-
ber of a particular groups is accorded the same set of
permissions with respect to a group of associated objects. In
effect, such Role Based Access Control (RBAC) mecha-
nisms provide a mechanism whereby individuals may be
assigned to groups; the group is then listed on an Access
Control List (ACL) associated with an object or group of
objects.

The central notion of Role-Based Access Control (RBAC)
is that users do not have discretionary access to enterprise
objects. Instead, access permissions are administratively
associated with roles, and users are administratively made
members of appropriate roles. This idea greatly simplifies
management of authorization while providing an opportu-
nity for great flexibility in specifying and enforcing
enterprise-specific protection policies. Users can be made
members of roles as determined by their responsibilities and

US 6,202,066 B1

3

qualifications and can be easily reassigned from one role to
another without modifying the underlying access structure.
Roles can be granted new permissions as new applications
and actions are incorporated, and permissions can be
revoked from roles as needed. Furthermore, most RBAC
mechanisms support the idea of heirarchical groups, i.e.,
where a member of “manager”, for example, automatically
obtains all permissions provided to “subordinate™.

By comparison, the basic idea of conventional ACLs is to
associate an object (or group of objects, such as a “direc-
tory” of “files”, in Windows parlance) with a list of users and
groups. Associated with each user or group in an ACL for an
object is a set of operations which may be performed on that
object. An operation on the object may be performed by a
user if that user or a group to which that user belongs is listed
in the ACL associated with the object and that operation is
associated with that user or group. Windows NT is one
well-known operating system which supports such ACL
mechanisms. However, while as noted Windows NT does
allow assignment of groups to ACLs, heirarchical permis-
sions are not supported. “PASC P1003.1e” is an IEEE
specification for an operating system interface which simi-
larly supports ACLs.

Adding implementation of RBAC provides several
advantages over simply controlling access to objects by
ACLs. Even a very simple RBAC model affords an admin-
istrator the opportunity to express an access control policy in
terms of the way that the organization is viewed, i.e., in
terms of the roles that individuals play within the organiza-
tion. With RBAGC, it is not necessary to translate a natural
organizational view into another view in order to accom-
modate an access control mechanism. In addition, most
RBAC models have features which most ACLs do not. In
particular, as noted above, many RBAC models support role
hierarchical organization of roles, where one role can
“inherit” the permissions accorded another.

Thus, by associating permissions with roles or groups and
by moving users in and out these roles or groups, the
complexity of permission assignment administration can be
reduced, lowering the total cost of security administration
and improving its reliability. Thus, RBAC simplifies the
problem of maintaining user access control.

There is, however, no comparable mechanism for simpli-
fying object access control. In the prior art, object access
control is handled resource by resource; more specifically, in
NT and other operating systems, an access control list is not
itself treated as an independent entity that might be associ-
ated with a file or group of files, but is simply an attribute
of the file’s definition. Accordingly, changes must be made
resource by resource. This can be a significant task for a
system administrator, and, again, errors amount to breaches
of the security system.

The basic architecture of the ACL mechanism is shown by
U.S. Pat. Nos. 4,621,321 and 4,701,840 to Boebert, which
also draw a distinction between ordinary and distinguished
objects in a computer system.

Prior art patents further exemplifying such practices, and
in some cases pointing out the difficulties and shortcomings
thereof, include U.S. Pat. No. 5,720,033 to Deo, U.S. Pat.
No. 5,265,221 to Miller, and U.S. Pat. No. 5,787,427 to
Benantar, all showing assignment of a number of objects
requiring common access control lists to groups.

Also generally pertinent to issue of access control in a
computer system are U. S. Pat. No. 5,701,458 to Bsaibes;
U.S. Pat. Nos. 5,802,276 and 5,765,153 to Benantar; U.S.
Pat. No. 5,809,506 to Copeland; and U.S. Pat. No. 5,768,504

10

15

20

25

30

35

40

50

55

60

65

4

to Kells. U.S. Pat. No. 5,163,147 to Orita discusses the
“level” concept of computer security (see U.S. Ser. No.
08/975,189, now U.S. Pat. No. 6,023,765 for disclosure of a
method for incorporating RBAC into such a system).
Finally, U.S. Pat. No. 5,202,997 to Arato relates to control
of peripherals.

With the role or group approach to security
administration, much of the effort in providing administra-
tive tools has been devoted to tools, such as RBAC, for
associating users with roles or groups. As noted above,
although operating environments typically used in access
control management applications, for example Windows
NT, do not have a general mechanism for group hierarchies,
the use of hierarchies in administering the relationships
between users and roles or groups can significantly reduce
administrative costs by allowing access control to be defined
with respect to such roles or groups of individuals.

As noted above, there is at present no mechanism avail-
able for analogously assigning access control status to
collections of objects, apart from the capability of assigning
ACLs to directories. Hence significant difficulties arise in
connection with access control to objects or groups of
objects.

OBJECTS OF THE INVENTION

is therefore an object of the invention to provide more
convenient, less costly control of access to objects within a
computer system by introducing an object-based access
control method and a management tool with which to
implement and administer the method.

It is a further object of the invention to provide methods
whereby an object-based access control method may be
employed to provide convenient access control to objects
stored at various locations.

It is a further object of the invention to provide improved
security by reducing the occurrences of unauthorized access
to information by implementing object access type method-
ology rendering access control more reliable in use.

It is yet another object of the invention to apply indepen-
dent entity access control mechanisms to computer
networks, relational databases, and to objects accessed over
the Internet, i.e., the Web.

SUMMARY OF THE INVENTION

The present invention introduces the concept of an
“Object Access Type” and describes a software tool, “RGP-
Admin”, for using Object Access Types to administer asso-
ciations between roles or groups and permissions. The
Object Access Types are useful in connection with most
RBAC and ACL mechanisms.

More specifically, according to the present invention, a
separate entity, called an Object Access Type (OAT), is
defined as an access control information specification for
network, Web and relational database environments. The
OATs are then manipulated as an entity separate from the
objects—such as resources—with which they may be asso-
ciated. OATSs can be created, edited, deleted, and assigned to
or removed from objects. Each OAT thus defines an access
control specification, which in turn associates a list of
individuals, or roles (e.g., branch manager, financial advisor,
teller, and employee, in a bank environment) in a system
inplementing RBAC, with corresponding sets of permis-
sions provided with respect to a corresponding list of
objects. The same users can then be given the same permis-
sions with respect to an additional object simply by adding

US 6,202,066 B1

5

that role, assigned to those users, to the corresponding OAT;
similarly, if the status of a given object is to be changed, it
need simply be reassigned from one OAT to another more
appropriate OAT.

For example, in many cases it is desirable for those
designated as members of a first role to be given a first level
of access or permissions to a first set of files or objects, while
those designated to a second role are granted a different
second level of access to the same set of files. An OAT is
then created associating the first role with the first level of
permissions, and the second role similarly with the second.
The OAT is then assigned to the appropriate groups of
objects, effectively implementing the desired permission
scheme.

It will be apparent that changes in the status of individuals
can be made by changing their role assignment(s), that is, as
usual in RBAC. However, according to the invention,
changes in the status of a document can be made by
reassigning it from one OAT to another, or by changing the
access control specifications of the corresponding OATS.
Similarly, changes in the permissions granted to a particular
role can be implemented simply by changing the access
control specification of the corresponding OATS, and alter-
ation of the permissions provided with respect to a group of
objects (e.g., upgrading a security level required to access
the objects) can be made by assigning the objects to a
different OAT.

Another significant aspect of the invention lies in the tools
provided to the system administrator to use the OAT con-
cept. Apart from an OAT Editor using the usual tools
provided by the operating system to manipulate the OATSs as
separate entities, an OAT Viewer also provides a series of
coded displays that enable the ready verification of permis-
sions being provided; these may comprise a first display
identifying which OATs are assigned to which resources,
and a second display indicating the permissions which are
granted to members of the various roles with respect to the
corresponding resources.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be better understood if reference is
made to the accompanying drawings, in which:

FIG. 1 is a block diagram showing the role/group rela-
tionships for a simplified banking organization;

FIG. 2 is an example illustrating how icon symbolism is
used in an Object Access Type View window to indicate
which files have or do not have a particular OAT
designation, again, in the banking example;

FIG. 3 is an example indicating how permissions assigned
to an OAT are modified, using an Object Access Type Edit
window;

FIG. 4 is an example illustrating how icon symbolism is
used to indicate the permissions associated with selected
roles/groups in a Role/Group Permission View window; and

FIG. 5 is a second version of the Role/Group Permission
View window of FIG. 4, illustrating how heirarchical per-
missions are indicated.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The following definitions of terms used herein are pro-
vided for the convenience of the reader, and are not to be
construed to limit the invention.

Access: The capability of a user to operate on an object.

Access Control: a technique used to define or restrict the
rights of individuals or application programs to operate on

10

15

20

25

30

40

45

50

55

60

65

6

an object, e.g., to obtain data from or place data into a
storage location, or to operate a periperal or other resource.

Access Control List: A list associating a set of permissible
operations that may be performed on an object by a user or
group.

Group: a set of individuals having the same responsibili-
ties.

Hierarchy: A set of roles having strict partial ordering
wherein one role can be included in another role.

Inherit: The act of one role assuming the authorizations of
another role.

Mechanisms: A formalized methodology or set of
relationships, e.g., as implemented by a computer system.

Network: A computer entity comprising a plurality of
Servers.

Object: A passive entity that contains or receives infor-
mation.

Object Access Type: A novel entity, implemented by an
access control specification, that may be created, deleted,
edited, written to, or read from, storing information assign-
ing permissions to individuals or groups of individuals, and
to which resources may be assigned, whereby the individu-
als or groups of individuals are associated with specific
permitted modes of access to a set of one or more protected
resources.

Operating Environment: A combination of host software
implementing an enterprise application.

Operating System: A software program that manages the
basic operation of a computer system.

Permission: An authorization granted to a user defining
the nature of interactions that the user can have with an
object.

Resource: Anything used or consumed while performing
a function. The categories of resources are time,
information, objects, or processors.

Role: A job function within an organization, defined by
the authorities and the responsibilities of the function.

Role-Based Access Control: An access control mecha-
nism whereby roles are created based on responsibilities,
roles are associated with permissions necessary to those
responsibilities, and the roles are associated with individu-
als.

Security Attributes: Descriptions of the affiliations
between users and their authorized roles, or between per-
missions and the authorized operations on specified objects.

Servers: Shared computers connected by a network.

Subject: An active entity, generally in the form of a
person, process, or device, that causes information to flow
among objects or changes the system state.

User: Any person who interacts directly with a computer
system, or a computer process which may or may not
represent a person.

A permission can thus be described as authorization to
perform an operation on an object, while an access control
policy which uses roles or groups defines an association
between a role or group and the permissions for that role or
group.

This association can be represented as a 3-tuple:

(role or group; object; {permitted operations on object})

That is, a user assigned to role (or a member of group) is
authorized to perform operation on object only if operation
is a member of the set of permitted operations.

This representation is isomorphic to a representation of
the form:

US 6,202,066 B1

7

(object; role or group; {permitted operations on object})

where the first and second elements of the 3-tuple are

interchanged.

In this equivalent representation, for each object, there is
a list of roles or groups and associated permitted operations
for those roles or groups with respect to that object. This list
is the role—or group-based access control information for
the object. This information—that is, the set of permissions
and associated users—may be different for each object; as
noted above, in conventional access control methods, each
object (or at most, a group of associated objects, such as a
directory of files) has its own access control list. However,
for many objects this information —again, the set of per-
missions and associated users—may be the same. Recog-
nizing that access to many objects can be controlled
identically, the present invention provides a simple mecha-
nism for thus associating groups of objects with sets of
permissions and of users, organized as roles or groups;
access control to objects is thus significantly simplified and
thus made more reliable.

According to the invention a novel type of entity referred
to as an “Object Access Type” (“OAT”) is defined. Broadly
speaking, an OAT describes an access control specification,
and provides a mechanism for mapping permissions autho-
rized with respect to various objects to the corresponding
identified individuals or groups. More specifically, the OATs
provided according to the invention map identified individu-
als or groups to the permissions authorized for those indi-
viduals and groups. When an OAT is associated with an
object or set of objects, the user is granted access to the
objects according to the permissions mapped to the user or
to the role or group assigned to the user within the OAT. The
OATs can be manipulated as independent entities separate
from the objects with which they are associated; that is, the
OATs can be created, edited, deleted, assigned to objects,
and removed from objects. Users, typically organized by
assignment to roles or groups, can be assigned various sets
of permissions by the OATs; stated differently, different
users may be assigned different permissions by the OAT, but
each user obtains the same permission with respect to all
objects assigned to that OAT.

The assignment of permissions and associated users to
objects by the OAT mechanism has numerous advantages.
As mentioned above, in RBAC, changes in the status of
individuals can conveniently be implemented with respect to
a number of objects by changing their role assignment(s);
however, RBAC still requires each object to be separately
thus assigned to one or more roles.

According to the invention, changes in the status of a
document, for example, can be implemented by reassigning
it from one OAT to another, or by changing the access
control specifications of the corresponding OATs. Similarly,
changes in the permissions granted to a particular role can be
implemented simply by changing the access control speci-
fication of the corresponding OATs, and alteration of the
permissions provided with respect to a group of objects (e.g.,
upgrading a security level required to access the objects) can
be made by assigning the objects to a different OAT.

Use of the OATs to control access to objects is explained
below with reference to a simple example, after explanation
of the tools whereby the OATs are implemented and moni-
tored.

More specifically, another significant aspect of the inven-
tion lies in the tools provided to the system administrator to
use the OAT concept. An OAT Editor allows a system
administrator to use the conventional methods supported by
the operating system to manipulate the OATs as separate

10

15

20

25

30

35

40

45

50

55

60

65

8

entities. An OAT Viewer also provides a series of user
interface screens, that is, formatted displays that enable the
ready verification of permissions being provided; these may
comprise a first user interface identifying which objects are
assigned to which OATS, and a second display indicating
which roles have access to which sets of objects within the
OATs.

In one implementation of the invention within the Win-
dows NT operating system, a management software tool,
RGP-Admin, controls the association of roles or groups and
permissions by means of the OAT mechanism, and allows
their monitoring through views of the OATSs, the roles or
groups, the objects, and the permissions granted.

More specifically, RGP-Admin:

Provides a convenient mechanism for defining OATs;

Provides views of associations between OATs and
objects;

Provides views of associations between roles or groups,
and the permissions granted to each with respect to the
various objects;

Allows a system administrator (or similar) to assign an
object to one or more OATSs, or remove it therefrom;
and

Defines, saves, and recalls OATs and OAT collections.

In the Windows NT implementation mentioned, RGP-
Admin manages stores of OATs which can be associated
with objects, and writes the permissions and users (or roles)
associated with each objects to the access control lists
thereof; that is, the OAT in this implementation serves as a
highly sophisticated mechanism for maintaining the conven-
tional ACLs of all the objects assigned to the OAT. However,
the OATs could be implemented in different ways; for
example, ACLs treated as separate portions of the object
(i-e., as conventional) could be dispensed with completely,
and access to a given object permitted only if an OAT
assigned to that object itself indicated that the requestor was
a member of a role having been assigned the permission
sought with respect to the object.

In the preferred embodiment, RGP-Admin has three prin-
cipal user interface displays corresponding to three main
functions: these are referred to as the Object Access Type
View, the Object Access Type Editor, and the Role/Group
Permission View.

The Object Access Type View allows the OAT assign-
ments to be viewed by selecting an OAT and a set of objects.
FIG. 2 (discussed below) is an example of an Object Access
Type View display window related to a simple banking
example set forth below. For each object in the selected set,
Object Access Type View displays an object icon (on, for
example, a system administrator’s display device) including
an identifier such as a color or symbol indicating access
control information about that object. For instance, the
object icon may appear in green, if the access control
information corresponding to the object includes the
selected OAT, or red otherwise.

In a further aspect of the invention, if the selected OAT is
set to a selected object and, optionally, to objects “inherited”
by that object (e.g., in Windows NT, a directory contains or
“Inherits” files), the object is displayed red; if the OAT is
removed from a selected object and, again optionally, to
objects inherited by that object, the object is displayed as
green. The Object Access Type View also creates, saves, and
recalls OAT collections, and obtains the access control
information for an object and adds it to an OAT collection
when appropriate.

The Object Access Type Editor provided by RGP-Admin
in the preferred embodiment of the invention allows con-

US 6,202,066 B1

9

venient creation and editing of OATs by allowing a system
administrator to add or remove a role or group from the
OAT, to modify the permissions associated with that role or
group, to assign objects to OAT designations or remove
OATs from objects. The OAT Editor screen is illustrated in
FIG. 3, again set in a bank organization context, and
described in more detail below.

The Role/Group Permission View screen shown in FIG. 4
displays the access permissions associated with selected
objects for a selected role or group and graphically displays
object access by role or group, in order to allow verification
of the access permissions set by means of the Object Access
Type View, as above, or by another tool, such as Windows
NT Explorer. More specifically, as noted above, object
access may conveniently be defined according to the inven-
tion by means of OATs using the Object Access Type View.
However, when an OAT definition is not required, e.g., the
number of objects to be set to specific access control
information is small, then tools other than RGP-Admin
might be used to set the access control information.

Different kinds of access, that is, different sets of
permissions, may be displayed to illustrate 1) those objects
as to which a selected role or group has a specific selected
permission and 2) those objects to which a selected role or
group has any access. The first question is posed, e.g., by a
system administrator, by selecting a set of objects, a role or
group, and specific permissions. RGP-Admin then answers
by displaying the object icon for each object in the selected
set, in a first manner, e.g., in green, if the selected role or
group has all of the selected permissions, or in a differing
manner, e.g., in red, if the selected role or group does not
have all of the selected permissions. The second question is
posed by selecting a set of objects and a role or group, and
by leaving all specific permissions unselected. For each
object in the selected set, RGP-Admin displays the object
icon in a third way, e.g., in blue, if the selected role or group
has any access, i.e., any permission to access the object, or
red, if the selected role or group has no access to the object.

Although such color-coded icons represent a simple and
effective means for distinguishing different levels of access,
it will be recognized that any readily distinguishable symbol
or convention could be employed; in the monochromatic
drawings forming part of this application, icons which
appear green on a display in the actual implementation are
shown solid, and those which are actually red are shown in
outline. The drawings do not include any which would be
blue.

The capability for one role to inherit another role—that is,
for example, while members of “manager” have their own
permissions, they may also inherit those of “subordinate”—
is a common feature of RBAC models. Such a “role hier-
archy” is implemented by a strict partial ordering on the set
of roles. One can think of role inheritance as the capability
for one role to be authorized for (or “included in”) another
role.

An equivalent concept implemented in various access
control systems implementing ACLs is the capability for one
group to be a member of another group. In other words, “role
a inherits role b” is equivalent to “role a is authorized to
perform role b” or “group a is a member of group b.”

It is important to know whether a given role or group
effectively has access to an object. When organization of
roles or groups into hierarchies is supported, access of a role
or group to a given object may be provided either as a result
of the permissions associated with that role or group, or as
a result of the given role or group inheriting the permissions
of some other role or group that has permission to access the

10

15

20

25

30

35

40

45

50

55

60

65

10

object. It can also be important to know whether access is
provided to the object as a result of the permissions defined
for the role or group itself or is based on permissions
associated with inherited roles or groups.

The Role/Group Permissions View illustrated in FIGS. 4
and § supports either a hierarchy or non-hierarchy mode. It
will be observed in FIG. 4 that a “Heirarchy Mode” box is
provided, so that the system administrator can distinguish
between directly granted or inherited permissions. If the
hierarchy mode is selected, then questions 1) and 2)
addressed above are answered based on the effective access
of the selected role or group, i.e., based on the permissions
authorized for the selected role or group and any of its
inherited roles or groups. FIG. § shows another version of
the Role/Group Permission View, depicting permissions
obtained through operation of a heirarchy, i.e., where one
role inherits the permissions of another. In addition, the roles
or groups inherited by the selected role or group are dis-
played. If hierarchy mode is not selected, then these ques-
tions are answered based only on the permissions directly
authorized for the selected role or group.

Objects, such as files and processes, can also be organized
into hierarchies. In such object hierarchies, it is important to
know not only the access of a role or group to an object, but
also to know whether the path in the hierarchy to the object
can be traversed, that is, whether the user seeking a particu-
lar permission with respect to an object belongs to a role
having that permission to all intermediate objects in the path.
(In the Windows NT environment, for example, this typi-
cally amounts to determining whether the user has access to
all the the directories “above” the subdirectory in which a
particular file is located.) The capability of evaluating the
path is provided in the Role/Group Permission View by a
box allowing the “Path Mode” to be selected for controlling
the display. If path mode is selected, questions 1) and 2) are
answered for objects in the hierarchy not shown as end
nodes (that is, which are intermediate other other objects in
the path) based on whether the selected role or group has
permission to traverse these intermediate nodes. Nodes in
the hierarchy shown as end nodes are displayed normally. If
Path Mode is not selected, then the questions are answered
for all nodes based on the selected role or group. Note that
when no permissions are selected, Path Mode is irrelevant
since the permission to traverse an intermediate node is
included in the concept of any access.

A simple OAT/RGP-Admin embodiment for a Windows
NT environment is described below to illustrate the imple-
mentation and characteristics of the present invention. Typi-
cal roles/groups in a simple banking environment are shown
in FIG. 1. The arrangement shown illustrates that all mem-
bers of the roles branch_ manager, teller, and account-rep
are also members of employee, and thus would have their
own set of permissions, as well as those assigned to
employee; financial _advisor also inherits the permissions of
account__rep, but may also have additional permissions.

In this case the objects are NT File System (NTES) files
or directories, the Object Access Types (OATS) are NTFS
ACL specifications, and the possible Permissions are the
usual NTFES file permissions: Read(R), Write(W), Execute
(X), Delete(D), Change Permissions(P), and Take
Ownership(O).

Windows NT Explorer uses a pair of parenthesized per-
mission lists for describing file and directory permissions,
respectively. This notation is also used in RGP-Admin.
Table 1 shows the permissions asigned to each of the roles
with respect to several OATS, to which the objects are
assigned. For example, branch-manager has permissions

US 6,202,066 B1

11

“(RX)” and “(R)” for the OAT accounts. Accordingly, mem-
bers of branch-manager have Read and Execute permission
as to all files assigned to the OAT accounts, but only Read
permission for directories within accounts. Similarly, if a
new directory or file is created and assigned to the OAT
accounts, then the members of branch-manager will obtain
the same access thereto.

TABLE 1
Object Access Type
Role/Group accounts cd_to_dir employee_read suggestions
account_rep (WX) [0: 9N @)
RD
branch__manager (RX) (R) (X) () [R) (D)
employee_ X (0 RWX) (R) X ®)
financial__advisor (R) () X)

()
teller X RW) X)) ()

Table 1 thus illustrates a typical method of providing
employees of varying responsibility, where the roles/groups
and their hierarchy are as shown in FIG. 1, with appropriate
access to various files maintained by the bank’s computer
system (typically a local area network of PCs running the
Windows NT operating system), such as files related to
depositor account information and employee information.

The roles/groups branch__manager and teller are two that
one might expect at a bank’s branch office. The role/group
account__rep is authorized for the bank’s account represen-
tatives who sit at the desks outside of the teller windows.
The role/group financial advisor is authorized for an
account representative who is trained in recommending
non-insured investment products. The role/group financial
advisor inherits the permissions of account_rep because
financial advisor needs to be able to open and close
accounts. The roles/groups account-rep, branch_ manager,
financial _advisor, and teller similarly inherit the permis-
sions of the role/group employee since any user authorized
for these roles/groups is a bank employee.

In the example, role/group permissions defined for each
of four Object Access Types (OATS) according to the inven-
tion are shown in Table 1, as follows. The OAT accounts
applies to files that contain individual account information
and to directories that hold such files. Various roles have
varied permission with respect to these files; for example,
only the members of account_rep can close an account, as
no other roles have the permission (D). The OAT cd__to_ dir
provides all roles/groups with the capability of traversing a
directory in order to access files in the directory. The OAT
employee-read applies to files readable by all employees and
to directories which contain employee related files. Finally,
as to the OAT suggestions, all employees need to be able to
write files to such directories in order to create suggestion
files containing suggestions for more efficient bank
operations, but only members of branch_manager can
delete these files.

The permissions granted to each role with respect to
various objects by the OATSs are designed to implement bank
policy. In a more specific example, the permissions granted
to members of account rep for each of the Object Access
Types to effectuate bank policy may be implemented as
follows:

The role/group account rep must be able to create and
delete account files; thus, account rep has permission to
traverse and write into the accounts directory, and read and
delete accounts files. Note that account_rep does not have
permission to read the accounts directory because bank

10

15

20

25

30

35

40

45

50

55

60

65

12

policy is that account__rep does not need to be able to create
a list of all account holders; similarly, account_ rep does not
have permission to write into an accounts file, because when
an account is created or deleted, the initial deposit or final
withdrawal from the account must be performed by a
member of teller.

Similarly, the members of branch__manager have permis-
sion to read the accounts directory and accounts files, and to
read and delete suggestion files, as noted above, while the
members of employee have permission to read all employee
files, but do not have permission to access files or directories
associated with the OAT accounts.

The role/group financial advisor is able to read the
accounts directory, for example, in order to obtain a list of
all account holders. This permission is necessary to imple-
ment bank policy, e.g., in order that financial advisor can
derive marketing information about current account holders
in order to identify account holders who might be interested
in the bank’s uninsured investments. As members of
financial-advisor need permission to open and close both
insured and uninsured accounts, as also performed by
account_rep, but have additional functions, RBAC’s sup-
port of inherited roles is invoked so that financial advisor
inherits account_rep (as discussed in connection with FIG.
1); financial _advisor then has the permissions necessary to
function as an account__rep.

Finally, the members of teller must have the permission to
make changes (deposits and withdrawals) from the accounts
files. Thus, teller has permission to traverse the accounts
directory and read/write accounts files. Note that teller has
no permission to create or delete files in the directory
accounts, this being the responsibility of the account_rep.

In order for all roles/groups to be able to traverse the
directory tree to access files for which they have
permissions, all roles/groups have Execute permission on
the directories assigned to the OAT cd_ to_ dir, such as the
bank files directory.

It will thus be appreciated by those of skill in the art that
the Object Access Type (OAT) entity defined according to
the invention allows files and other objects to be grouped
according to the permissions given the members of various
roles with respect thereto. Stated somewhat differently, all of
the objects assigned to a given OAT may be accessed
identically by the members of each of the roles assigned to
that OAT. Of course, the same objects may be assigned to
more than one OAT, just as the members of a given role may
be assigned differing permissions with respect to various
groups of files by being assigned membership in differing
OATs.

The user interface screens shown in FIGS. 2-5 can now
be explained in more detail, to explain the use of the
information depicted. Assume the files shown in FIGS. 2, 4,
5 are associated with Object Access Types as follows:

1. Directories a:\ and bank_ files are associated with OAT

cd to_ dir

2. Directory accounts and all of the files within this

directory, i.e., *.acc are associated with OAT accounts

3. Directory empl info, and files empl services.txt and

retirement__info.txt are associated with OAT
employee__read

4. The files kb.sug, mb.sug, and tc.sug are associated with

OAT suggestions

The Object Access Type View screen of FIG. 2 permits
files to be identified according to their Object Access Type.
When RGP-Admin starts, it starts in the Object Access Type
View and it is here that the matrix of role/groups, object
access types and permissions is displayed. In the FIG. 2

US 6,202,066 B1

13

example, as indicated in the window labeled Object Access
Type, the files shown as green (i.e., by solid icons) all belong
to the OAT employee_read. The permissions given mem-
bers of employee to files in this OAT are indicated in the
upper right window as (RWX)(R); i.e., members of
employee can read, write, or execute directories associated
with this OAT, but can only read files associated with this
OAT. In the lower right window, the files empl__services.txt,
and retirement _info.txt are shown in green, meaning that
these files can be read by the members of employee; the
remaining files cannot.

The Object Access Type Editor of FIG. 3 allows the
system administrator to create, edit, and remove Object
Access Types. For example, the OAT accounts is shown as
having been selected; when a role is selected from the list
provided, the boxes on the right will be checked to indicate
the permissions provided. To change these, the system
administrator simply clicks on the appropriate boxes.

The Role/Group Permission View screen of FIG. 4 per-
mits determination whether a particular role has a particular
permission with respect to an identified file. The permission
of interest is selected by checking the corresponding box.
The example indicates that financial advisor does not have
Read permission for the files a:\bank files and empl__info, as
their icons are shown in red, while financial__advisor does
have Read permission for the directory accounts, the icon of
which is shown in green.

Finally, a further user interface screen, the Role/Group
Permission View screen of FIG. 5, allows determination of
permission provided by a role’s membership in a heirarchy.
The example shown in FIG. § indicates that financial
advisor has Read permission (note that only Read permis-
sion is checked) with respect to the accounts directory as a
result of the fact that, as defined in the accounts OAT,
financial advisor is given Read permission to a directory
associated with the accounts OAT (see Table 1) and the
accounts directory is associated with the accounts OAT.
Note that, as a result of the definition of the accounts OAT,
financial _advisor has no Read permission for files within
the accounts directory (i.e., the *.acc files) which are asso-
ciated with the accounts OAT. The Read permission for the
files within the accounts directory is granted as a result of the
fact that financial _advisor inherits account_rep, which has
Read permission as a result of the definition of the accounts
OAT. Also, financial advisor has Read permission on the
file empl_info as a result of the fact that financial _advisor
inherits employee and employee has Read permission for all
files associated with the employee_read OAT, as is the case
for the file empl info.

Thus, since in the FIG. 5 example, the Read permission is
checked and hierarchy mode is checked, the files accounts,
empl__info, and *.acc are shown in green, while the files a:\
and bank_ files are shown in red, indicating that financial _
advisor does not have Read permission to those files, even
as aresult of inheriting the roles account_rep and employee.

With this information, a person of ordinary skill in the art
would have no difficulty in implementing the invention.
While a preferred embodiment of the invention has been
described, it will be appreciated by those of skill in the art
that further enhancements and modifications thereto are
possible.

In particular, while the invention has been discussed in
detail in the Windows NT environment, and in an imple-
mentation in which the OATS effectively manage the access
control lists provided thereby, numerous other implementa-
tions of the invention are possible. For example, as dis-
cussed above, the issue of access control also arises in

10

15

20

25

30

35

40

45

50

55

60

65

14

connection with relational databases, which may be
accessed from a variety of processors not necessarily
conected in a network operated by a single operating system
per se; access control lists are then typically associated with
portions of the database and operated similarly. Implemen-
tation of the invention in this environment would typically
be accomplished by allowing a system administrator con-
trolling the server through which access to the database
passes to define OATs as above.

The question of access control also arises in connection
with objects stored such that they can be accessed over the
“Internet” or “Web”, i.e., such that they can be located by
universal resource locator (“URL”) inquiries; the “servers”
storing the resources sought may similarly store ACLs for
restricting access to various objects to individuals or groups
of individuals. Again, implementation of the invention in
this environment would typically be accomplished by allow-
ing a system administrator controlling the server through
which access to the resource sought must pass to define
OAIs as above. Finally, it is to be understood that the
terminology “access control lists” as used herein and in the
following claims includes conceptually similar mechanisms
for access control, however labeled.

Accordingly, these and other modifications to the pre-
ferred embodiment disclosed herein are intended to be
within the scope of the following claims where not specifi-
cally excluded thereby.

What is claimed is:

1. A method for improving access control administration
in computer environments, the method comprising the steps
of:

associating individual users with roles or groups having

identical access requirements to one or more sets of
particular objects in the environment;

creating an object access type (OAT) mechanism for

managing a plurality of OATs, each OAT being a
separate entity for associating one or more objects with
one or more roles or groups and sets of object access
permissions associated therewith; and

employing said OAIS to associate each said role or group

with a specific set of permissions defining allowable
accesses to a particular set of objects.

2. The method of claim 1, wherein each said OAT
associates the permissions permitted to the corresponding
individuals or groups of individuals assigned to said OAT to
the objects or groups of objects assigned to said OAT by
adding the identifications of said corresponding individuals
or groups of individuals and the permissions permitted
thereto to access control lists corresponding to each of the
objects or groups of objects assigned to said OAT.

3. The method of claim 1, wherein said computer system
comprises one or more discrete processor devices operated
effectively as a single resource controlled by a single oper-
ating system, and wherein said operating system comprises
means providing the capability to restrict access to objects or
groups of objects by means of an access control list provided
separately with respect to each said object or group of
objects.

4. The method of claim 1, wherein said computer system
comprises an undefined number of processor devices con-
nected by reconfigurable connections, such that objects or
groups of objects within said system may be located by
universal resource locator (URL) inquiries, and wherein
local processors controlling access to particular objects or
groups of objects comprise means providing the capability
to restrict access to objects or groups of objects by means of
an access control list provided separately with respect to
each said object or group of objects.

US 6,202,066 B1

15

5. The method of claim 1, wherein said computer system
comprises one or more discrete processor devices, and said
objects are organized in a relational data base controlled by
a server computer comprising means providing the capabil-
ity to restrict access to objects or groups of objects by means
of an access control list provided separately with respect to
each said object or group of objects.

6. In a computer system comprising a plurality of objects
controlled by means providing the capability to restrict
access to objects or groups of objects by means of an access
control list provided separately with respect to each said
object or group of objects, whereby individuals or groups of
individuals are listed on said access control lists together
with a set of permissions authorized to the corresponding
individuals or groups of individuals with respect to each of
the objects or groups of objects to which said access control
list corresponds, and wherein said access control lists are
treated by said computer system as attributes of the corre-
sponding objects or groups of objects, the improvement
comprising:

providing a mechanism within said computer system

whereby an Object Access Type (OAT) may be defined,
said OATs being treated by said computer system as
independent entities that may be created, edited, and/or
deleted, separate from objects or groups of objects, and
separately from individuals or groups of individuals;

said mechanism allowing said OATS to be assigned to or
removed from objects and groups of objects, and allow-
ing individuals or groups of individuals to be assigned
to said OATs;

said mechanism further allowing each said OAT to con-
tain lists of permissions permitted to the corresponding
individuals or groups of individuals assigned to said
OAT;

whereby each said OAT associates the permissions per-
mitted to the corresponding individuals or groups of

10

15

20

25

30

35

16

individuals assigned to said OAT to the objects or
groups of objects assigned to said OAT.

7. The computer system of claim 6, wherein said OAT
associates the permissions permitted to the corresponding
individuals or groups of individuals assigned to said OAT to
the objects or groups of objects assigned to said OAT by
adding the identifications of said corresponding individuals
or groups of individuals and the permissions permitted
thereto to the access control lists of each of the objects or
groups of objects assigned to said OAT.

8. The computer system of claim 6, wherein said com-
puter system comprises one or more discrete processor
devices operated effectively as a single resource controlled
by a single operating system, and wherein said operating
system comprises said means providing the capability to
restrict access to objects or groups of objects by means of an
access control list provided separately with respect to each
said object or group of objects.

9. The computer system of claim 6, wherein said com-
puter system comprises an undefined number of processor
devices connected by reconfigurable connections, such that
objects or groups of objects within said system may be
located by universal resource locator (URL) inquiries, and
wherein said means providing the capability to restrict
access to objects or groups of objects by means of an access
control list provided separately with respect to each said
object or group of objects is provided by local processors
controlling access to particular objects or groups of objects.

10. The computer system of claim 6, wherein said com-
puter system comprises one or more discrete processor
devices, and said means providing the capability to restrict
access to objects or groups of objects by means of an access
control list provided separately with respect to each said
object or group of objects is a relational data base controlling
access to particular objects or groups of objects.

#* * #* * #*

	1: Bibliography
	2: Drawings
	3: Drawings
	4: Drawings
	5: Drawings
	6: Description
	7: Description
	8: Description
	9: Description
	10: Description
	11: Description
	12: Claims
	13: Claims

